
International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 44

Simulation of Cloud Computing Environment using

CloudSim

Pankaj Sareen

Assistant Professor, SPN College Mukerian, India.

Dr. Tripat Deep Singh

Assistant Professor, GNIMT Ludhiana, India.

Abstract - Cloud computing is a recent advancement wherein IT

infrastructure and applications are provided as ‘services’ to end

users under a usage-based payment model. Analyzing and testing

different scheduling and allocation algorithms for the

development of these applications on a real cloud environment is

really challenging because most of the cloud applications show

changing incoming requests and moreover testing algorithms on a

real cloud can cost us a lot. For testing the effectiveness of a

particular policy that is to be implemented on a cloud we need a

simulation environment that can provide us an environment that

is close to the actual cloud, and can generate results that can help

us in the analysis of the policies so that we can deploy them on

actual Clouds. The CloudSim toolkit supports both system and

behavior modeling of Cloud system components such as data

centers, virtual machines (VMs) and resource provisioning

policies. It implements generic application provisioning

techniques that can be extended with ease and limited effort.

Currently, it supports modeling and simulation of Cloud

computing environments and also it exposes custom interfaces for

implementing policies and provisioning techniques for allocation

of VMs under Cloud computing scenarios. Several researchers

are using CloudSim in their investigation. This paper defines

CloudSim and then explores it’s all variants available in

CloudSim such as CloudAnalyst, GreenCloud, Network

CloudSim, EMUSIM and MDCSim. Comparison of all CloudSim

Variant with respect to networking, platform and language is also

made in this paper. This paper highlights the brief introduction

and working of CloudSim. Further this work focuses about

important parameters which are required to include in real life

cloud based application. This paper also talks about working of

CloudSim and how to implement cloud infrastructure in

CloudSim with example.

Index Terms - Cloud Computing, CloudSim, Cloudlet, Data

center, Simulation, CloudAnalyst, MDCSim, GreenCloud,

Virtual Machine, Provisioning Policies, VM Placement,

EMUSIM, CloudCoordinator, Predicates, CIS

1. INTRODUCTION

Cloud computing delivers infrastructure, platform, and

software as services, which are made available as subscription-

based services in a pay-as-you-go model to users and in recent

years, it is the biggest issue in IT fields.

Industries such as Amazon, Google, Microsoft, HP and IBM

have heavily invested on it. Cloud Computing refers to both

the applications delivered as services over the Internet and the

hardware and systems software in the datacenters that provide

those services [1]. In Cloud Computing Case, The Simulation

Tools gives or offers significant benefits to the Customers and

Providers. For Customers, It allows them to test their services

in controllable environment with free of cost and to check the

performance before publishing to the real clouds. Meanwhile

for Providers, allow them to check the kinds of leasing

according to various prices and load. In addition, this will lead

to optimize the resources access cost with improving the

profits. Without these tools, both of the Customers and

Providers must rely on imprecise evaluations, or on try-and-

error approaches, these approaches may lead to inefficient

services performance and reduce revenue generation. In

addition, Simulators helps researchers and industry-based

developers to test the performance of a developed application

service in a suitable and easy to setup environment. In the

absence of such simulation platforms, Cloud customers and

providers have to rely either on theoretical and imprecise

evaluations, or on try-and-error approaches that lead to

inefficient service performance and revenue generation. These

tools open up the possibility of evaluating the hypothesis in a

controlled environment where one can easily reproduce

results.

1.1 Existing Simulation Toolkits

The various Cloud Simulation Toolkits are [2]:

1.1.1. CloudAnalyst

CloudAnalyst was derived from CloudSim and extends some

of its capabilities and features proposed [3]. CloudAnalyst

separates the simulation experimentation exercise from a

programming exercise. It also enables a modeler to repeatedly

perform simulations and to conduct a series of simulation

experiments with slight parameters variations in a quick and

easy manner. CloudAnalyst can be applied to examining

behavior of large scaled Internet application in a cloud

environment.

1.1.2. GreenCloud

GreenCloud is a CloudSim that have green cloud computing

approach with confidently, painlessly, and successfully. In

other words, GreenCloud is developed as an advanced packet

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 45

level cloud network simulator with concentration on cloud

communication [4]. GreenCloud extracts aggregates and makes

fine grained information about the energy consumed by

computing and communication elements of the data center

equipment such as computing servers, network switches and

communication links.

GreenCloud Aim is to develop high-end computing systems

such as Clusters, Data Centers, and Clouds that allocate

resources to applications hosting Internet services to meet

users' quality of service requirements and to minimize

consumption of electric power by improving power

management, dynamically managing and configuring power-

aware ability of system devices.

GreenCloud can reduce Data Center Power Consumption by

workload consolidation via DC virtualization and by

improving sustainability by reducing host count.

1.1.3. Network CloudSim

Network CloudSim is an extension of CloudSim as a

simulation framework which supports generalized

applications such as high performance computing

applications, workflows and e-commerce [5]. Network

CloudSim uses Network Topology class which implements

network layer in CloudSim, reads a BRITE file and generates

a topological network. In network CloudSim, the topology

file contains nodes, number of entities in the simulation

which allows users to increase scale of simulation without

changing the topology file. Each CloudSim entity must be

mapped to one BRITE node to allow proper work of the

network simulation. Each BRITE node can be mapped to only

one entity at a time. Network CloudSim allows for modeling

of Cloud data centers utilizing bandwidth sharing and latencies

to enable scalable and fast simulations. Network CloudSim

structure supports designing of the real Cloud data centers and

mapping different strategies. Information of network

CloudSim is used to simulate latency in network traffic of

CloudSim.

1.1.4. EMUSIM

EMUSIM is an integrated architecture to anticipate service’s

behavior on cloud platforms to a higher standard. EMUSIM

combines emulation and simulation to extract information

automatically from the application behavior via emulation and

uses this information to generate the corresponding simulation

model. Such a simulation model is then used to build a

simulated scenario that is closer to the actual target production

environment in application computing resources and request

patterns. Information that is typically not disclosed by platform

owners, such as location of virtual machines and number of

virtual machines per host in a given time, is not required by

EMUSIM. EMUSIM is built on top of two software systems:

Automated Emulation Framework (AEF) for emulation and

CloudSim for simulation [6].

1.1.5. MDCSim

MDCSim is a commercial discrete event simulator developed

at the Pennsylvania State University. It helps the analyzer to

model unique hardware characteristics of different components

of a data center such as servers, communication links and

switches which are collected from different dealers and allows

estimation of power consumption. MDCSim is the most

prominent tool to be used as it has low simulation overhead

and moreover its network package maintains a data center

topology in the form of directed graph [5].

The comparison of these Simulation toolkits is shown in table

1:

 Table 1: Comparison of Various CloudSim

2. CLOUDSIM OVERVIEW

CloudSim [7, 8] is toolkit for simulation of cloud computing

written in Java languages. CloudSim is built in CLOUDS

(Cloud Computing and Distributed System) Laboratory by the

University of Melbourne, Australia. It is developed in java

platform including the pre developed modules such as SimJava

and GridSim. It is customizable tool [9]; it allows extension and

definition of policies in all the components of the software

stack, which makes it suitable as a research tool that can

handle the complexities arising from simulated environments.

It allows fast evaluation of scheduling and resource allocation

mechanisms within cloud data centers which are sometimes

are not easy to access. CloudSim performs system modeling

for Cloud system components, such as datacenter and VM, and

behavioral modeling as resource provisioning policy and can

analyze performance of them. CloudSim, however, does not

consider failure mode of Cloud resources such as VM, host,

datacenter, etc. There are many advantages of using CloudSim

for initial performance testing like:

 Time effectiveness: it takes very less effort and time

to implement Cloud-based applications.

 Flexibility: developers can easily model and test the

performance of their applications and its services in

heterogeneous environments (Microsoft Azure,

Amazon EC2).

2.1 Features of CloudSim

Various

CloudSim

Platf

orm

Program

ming

Language

Netw

orkin

g

Simula

tor

Type

Availabi

lity

CloudAna

lyst

Clou

dSim

Java Limit

ed

Event

Based

Open

Source

GreenClo

ud

NS2 C++/OTC

L

Full Packet

Level

Open

Source

Network

CloudSim

Clou

dSim

Java Full Packet

Level

Open

Source

EMUSIM AEF Java Limit

ed

Event

Based

Open

Source

MDC SIM CSI

M

C++/Java Limit

ed

Event

Based

Commer

cial

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 46

CloudSim can help to overcome the Cloud computing

challenges by providing many features [10] like:

 support for modeling and simulation of large scale

Cloud computing data centers

 support for modeling and simulation of virtualized

server hosts, with customizable policies for

provisioning host resources to virtual machines

 support for modeling and simulation of application

containers

 support for modeling and simulation of energy-aware

computational resources

 support for modeling and simulation of data center

network topologies and message-passing applications

 support for modeling and simulation of federated

clouds

 support for dynamic insertion of simulation elements,

stop and resume of simulation

 support for user-defined policies for allocation of

hosts to virtual machines and policies for allocation

of host resources to virtual machines

2.2 CloudSim Architecture

CloudSim simulator has a multi-layered structure which

consists of three layers [11] as shown in Fig. 1

Fig.1 CloudSim Layered Architecture

2.2.1 Core Layer

This layer [12] supports several core functionalities, such as

queuing and processing of events, creation of Cloud system

entities (services, host, data center, broker, VMs),

communication between components, and management of the

simulation clock.

 2.2.2 Simulation Layer

This layer is responsible for modeling and simulation of cloud-

based data center. This layer includes dedicated interfaces for

resource allocation such as CPU, RAM memory, storage and

network bandwidth. The simulation layer manages the

implementation of applications and monitor system status. It

consists of five hierarchical layers:

 Network: responsible for network topology and

determines the networks delays.

 Cloud resources: responsible for modeling

infrastructure level services (Datacenter), monitoring

the internal state of the resources in the datacenter,

performing load balancing (Cloud Coordinator).

 Cloud services: providing hosts with virtual machines;

allocation of resources such as CPU, memory,

bandwidth. This layer enables the developers to

implement their own techniques and different

algorithms for resource allocation.

 VM services – includes components for managing

virtual machines and cloudlets.

 User interface structures – provides an interface to

configured virtual machines and tasks (cloudlets).

2.2.3 User Code Layer

This Layer allows developers to change the parameters of the

main CloudSim objects: hosts (number of servers and their

characteristics), virtual machines, users, resource planning

policies. It Provides users with the ability to:

 Generate new configurations of applications.

 Perform tests on cloud-based environment based on

custom configurations.

 Comparison and evaluation of techniques for allocating

resources for clouds and federation of clouds.

As cloud computing is a rapidly evolving research area, there a

severe lack of defined standards, tools and methods that can

efficiently tackle the infrastructure and application level

complexities. By extending the basic functionalities already

exposed by CloudSim, researchers would be able to perform

tests based on specific scenarios and configurations

3. DESIGN AND IMPLEMENTATION OF

CLOUDSIM

3.1 CloudSim Classes

The Class design diagram for the simulator is depicted in

Figure 2.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 47

Fig. 2 CloudSim Class Diagram

Some of the classes are [13, 14]:

3.1.1 Bandwidth Provisioner

It is abstract classes that are used for provisioning of

bandwidth to VM (Virtual Machine). Main task of this class is

to undertake the allocation of network bandwidth to VM’s set

which is developed across the datacenter. If any researcher and

developer want to extend this class, so they can extend this

class with their own policies (priorities, QoS).

BandwidthProvisioningSimple allow a VM to reserve as much

as bandwidth as required.

3.1.2 Cloudlet

This class models the Cloud-based application services

(content delivery, social networking, business workflow),

which are commonly deployed in the data centers. CloudSim

represents the complexity of an application in terms of its

computational requirements. Every application component has

a pre assigned instruction length and amount of data transfer

that needs to be undertaken for successfully hosting the

application.

3.1.3 CloudCoordinator

This abstract class provides federation capacity to a data

center. This class is responsible for not only communicating

with other peer CloudCoordinator services and Cloud Brokers

(DataCenterBroker), but also for monitoring the internal state

of a data center that plays integral role in load balancing /

application scaling decision making.

3.1.4 DataCenter

This class models the core infrastructure level services

(hardware, software) offered by resource providers in a Cloud

computing environment. It encapsulates a set of compute hosts

that can be either homogeneous or heterogeneous as regards to

their resource configurations (memory, cores, capacity, and

storage).Furthermore, every DataCenter component

instantiates a generalized resource provisioning component

that implements a set of policies for allocating bandwidth,

memory, and storage devices.

3.1.5 DatacenterBroker.

This class models a broker, which is responsible for mediating

between users and service providers depending on users’ QoS

requirements and deploys service tasks across Clouds. The

broker acting on behalf of users identifies suitable Cloud

service providers through the Cloud Information Service (CIS)

and negotiates with them for an allocation of resources that

meet QoS needs of users. The researchers and system

developers must extend this class for conducting experiments

with their custom developed application placement policies.

3.1.6 DatacenterCharacteristics:

This class contains configuration information of data center

resources

3.1.7 Host

This class models a physical resource such as a compute or

storage server. It encapsulates important information such as

the amount of memory and storage, a list and type of

processing cores (to represent a multi-core machine), an

allocation of policy for sharing the processing power among

VMs, and policies for provisioning memory and bandwidth to

the VMs.

3.1.8 MemoryProvisioner

This is an abstract class that represents the provisioning policy

for allocating memory to VMs. This component models

policies for allocating physical memory spaces to the

competing VMs. The execution and deployment of VM on a

host is feasible only if the MemoryProvisioner component

determines that the host has the amount of free memory, which

is requested for the new VM deployment.

3.1.9 NetworkTopology

This class contains the information for inducing network

behavior (latencies) in the simulation. It stores the topology

information, which is generated using the BRITE topology

generator.

3.1.10 SANStorage

This class models a storage area network that is commonly

available to Cloud-based data centers for storing large chunks

of data. SANStorage implements a simple interface that can be

used to simulate storage and retrieval of any amount of data, at

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 48

any time subject to the availability of network bandwidth.

Accessing files in a SAN at run time incurs additional delays

for task unit execution, due to time elapsed for transferring the

required data files through the data center internal network.

3.1.11 Sensor

This interface must be implemented to instantiate a sensor

component that can be used by a CloudCoordinator for

monitoring specific performance parameters (energy-

consumption, resource utilization). The methods defined by

this interface are: (i) set the minimum and maximum

thresholds for performance parameter and (ii) periodically

update the measurement. This class can be used to model the

real-world services offered by leading Cloud providers such as

Amazon’s CloudWatch and Microsoft Azure’s Fabric

Controller. One data center may instantiate one or more

Sensors, each one responsible for monitoring a specific data

center performance parameter.

3.1.12 VirtualMachine

This class models an instance of a VM, whose management

during its life cycle is the responsibility of the Host

component. A host can simultaneously instantiate multiple

VMs and allocate cores based on predefined processor sharing

policies (spaceshared, time-shared). Every VM component has

access to a component that stores the characteristics related to

a VM, such as memory, processor, storage, and the VM’s

internal scheduling policy, which is extended from the abstract

component called VMScheduling.

3.1.13 VMProvisioner

This abstract class represents the provisioning policy that a

VM Monitor utilizes for allocating VMs to Hosts. The chief

functionality of the VMProvisioner is to select available host

in a data center, which meets the memory, storage, and

availability requirement for a VM deployment. The default

SimpleVMProvisioner implementation provided with the

CloudSim package allocates VMs to the first available Host

that meets the aforementioned requirements. Hosts are

considered for mapping in a sequential order. However, more

complicated policies can be easily implemented within this

component for achieving optimized allocations, for example,

selection of hosts based on their ability to meet QoS

requirements such as response time, budget.

3.1.14 VMMAllocationPolicy

This is an abstract class implemented by a Host component

that models the policies (space-shared, time-shared) required

for allocating processing power to VMs. The functionalities of

this class can easily be overridden to accommodate application

specific processor sharing policies.

3.2 CLOUDSIM EVENT MODEL

The CloudSim package doesn’t have any dependencies to

other simulation frameworks. It is therefore a self-contained

simulation framework with all elements that are required. The

class CloudSim is the main simulation class. The whole event

simulation [15] is processed within the same thread. It is based

on a clock that is not determined by the actual time of the day

and simply starts with zero. The events are getting executed in

a procedural way and not in a real time fashion as one might

expect from a simulation framework. However, the execution

of the simulation runs fast, but the log that is created contains

the correct timestamps as it would have been executed in real

time.

Figure 3 shows CloudSim Event Model. For simplification,

this illustration depicts only some selected methods/attributes

that have some relevance within the event model.

Fig. 3 CloudSim Event Model

Within the simulation there is the abstract SimEntity class. It is

able to handle events and send events to other entities.

Subclasses of the SimEntity are: Datacenter,

DatacenterBroker, CloudInformationService and

CloudSimShutdown.

The actual events are represented with the SimEvent class. An

event contains the time, when it should be started, the source

entity and destination entity (SimEntity class), the event type

and some arbitrary data that can be transmitted with the event.

The CloudSim.runClockTick () method iterates through all

entities (SimEntity classes) within the simulation and executes

the run () method on these objects. They then process the

events in the DeferredQueue that are sent to the entity

Whatever data centers we have, they must register with CIS

First. After registration, user will send request. What so ever

request is there, that is considered as Event. Whenever request

comes, it is put into the queue which is known as

FutureQueue. It is equivalent to process scheduler that will

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 49

keep all tasks in the ready queue which is equivalent to

FutureQueue.

Whenever you want to handle that event, you delete it from the

FutureQueue and now you have to put that into

DeferredQueue. FutureQueue contains events that are sent

from one entity to another on some point in the future. As soon

as the simulator’s clock is at this point, the event is getting

added to the DeferredQueue until they are all processed by the

entity objects.

Another central class in the simulation process is the

CloudInformationService. The Cloud Information Service

(CIS) is an entity that provides cloud resource registration,

indexing and discovery services. The Cloud has a list of hosts

that tell their readiness to process Cloudlets by registering

themselves with the CloudInformationService. Other entities

such as the DatacenterBroker can contact this class for

resource discovery service, which returns a list of registered

resource IDs. In summary, it acts like a yellow page service.

This class will be created by CloudSim upon initialization of

the simulation [16].

3.2.1 Predicates

Predicates: Predicates are used for selecting events from the

deferred queue. This is an abstract class and must be extended

to create a new predicate. Some standard predicates are

provided that are presented in Figure 4.

Fig. 4 CloudSim core simulation framework class diagram: predicates

 PredicateAny: This class represents a predicate that

matches any event on the deferred event queue. There is a

publicly accessible instance of this predicate in the

CloudSim class, called CloudSim.SIMANY, and hence no

new instances need to be created.

 PredicateFrom: This class represents a predicate that

selects events fired by specific entities.

 PredicateNone: This represents a predicate that does not

match any event on the deferred event queue. There is a

publicly accessible static instance of this predicate in the

CloudSim class, called CloudSim.SIMNONE; hence, the

users are not needed to create any new instances of this

class.

 PredicateNotFrom: This class represents a predicate that

selects events that have not been sent by specific entities.

 PredicateNotType: This class represents a predicate to

select events that do not match specific tags.

 PredicateType: This class represents a predicate to select

events with specific tags.

3.3 Cloudlets Processing in Data Centre

Processing of task units in Data Centre is shown in figure 5 as

a sequence diagram.

Fig. 5 Cloudlets Processing in Data Centre

Figure 5 shows what happens when an event is handled and

what information is needed to pass. Here we have one data

center; upon data center we have hosts and upon hosts we have

virtual machines. Main purpose of virtual machine is to

execute Cloudlet; whenever that event is over, we have to send

information back to data center because with the help of data

center, users are interacting through the data center for

executing their jobs; whenever job completes, we have to send

reply back to data center; and from data center, users are able

to get back the reply.

Now, data center sends message updateVMProcessing () to its

hosts, this event is just to know that what is going on that

particular virtual machine; at which state now it is i.e. whether

you have created virtual machine; whether virtual machine is

executing some task or it had done it and we are able to

destroy virtual machine. So, Data center will send the query

updateVMProcessing () to all the hosts available. Now what

host will do? It will send message to Virtual machine

regarding what is happening to Cloudlet. It will send message

updateCloudletProcessing () to virtual machine. Now virtual

machine sends back the reply i.e. time of next event. Next

event can either be execution of next instruction of Cloudlet or

the messages that will show now the execution is complete,

now you can either shutdown virtual machine or destroy it. All

virtual machines will send back the same reply.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 50

If host has 10 virtual machines, all machines will send time of

their next event. So now host will get back 10 replies; host will

just send single reply to data center; it will just choose smallest

reply from these 10 replies; it will send smallest time of next

event. Data center depending upon this type of event will send

back reply to customer.

3.4 CIS Registry

In the beginning of the simulation, each Datacenter entity

registers itself with the CIS (Cloud Information Service)

Registry. CIS provides database level match-making services

for mapping user requests to suitable Cloud providers. Brokers

acting on behalf of users consult the CIS service about the list

of Clouds who offer infrastructure services matching user’s

application requirements. In case the match occurs the broker

deploys the application with the Cloud that was suggested by

the CIS.

Fig. 6 CIS Registry

Whenever there are Cloud service providers, they have to

register themselves with CIS. Data centers are registered with

CIS Registry. If users are submitting their requests to brokers,

broker will first find the list of available Datacenters. So, it

will send query to CIS that what type of data centers it have.

Users can also query regarding their characteristics from

particular data center. Let us suppose user is from Ludhiana

and we have one data center in Chandigarh, one in Delhi and

one in Mumbai. Now what should be the user preference;

obvious Chandigarh because it is near. So user will query

regarding Chandigarh data center. Based upon these

characteristics, if they are able to run user task then suppose

user will say he just want 5 Virtual machines to be deployed;

over that particular one he will schedule his task and so on;

After task is completed, user can send message to destroy

virtual machine.

3.5 CloudSim physical resources model

Physical resources are defined on different levels with

different attributes. Table 2 lists some important attributes,

when it comes to resource scheduling and allocation.

Table.2 Resource Objects

4. Working with CloudSim

4.1 Installing CloudSim

CloudSim is library (tool) for cloud computing simulation

written in java language. So we should have a basic knowledge

of java programming. CloudSim installation is not needed

because it is a library so we just have to unpack the package

and then add .jar file as a library into our project. It can work

with any programming IDEs that support java like netbeans or

eclipse [17].

Resource Attribute Meaning

Host

peList Number of processing

cores.

ram The amount of memory

associated with the

host.

bandwidth The bandwidth that is

reserved for the host.

storage The hard disk size a

host has.

VM

numberOfPes Number of processing

elements (cores)

required.

ram The amount of memory

required.

bandwidth The bandwidth that is

required.

size Storage size in MB.

userID The user identity of the

owning user.

Cloudlet cloudletLength Number of Million

Instructions (MI) that

are required for the job.

cloudletFileSize Disk space needed,

when starting the job

(MB).

cloudletOutputSize Disk space needed,

when the job is finished

(MB).

numberOfPes Number of processing

elements (cores) the job

needs to execute.

userID The user identity of the

owning user.

vmID The vmID where this

cloudlet is supposed to

run.

utilizationModelCpu The utilization model of

the CPU.

utilizationModelRam The utilization model of

the RAM.

utilizationModelBw The utilization model of

the bandwidth.

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 51

Following are the steps for how to use CloudSim with

netbeans [18]:

1. Download eclipse from

http://www.eclipse.org/downloads/

2. Extract eclipse to particular directory. Here let’s say

C:\eclipse

3. Download CloudSim from

http://code.google.com/p/cloudsim/downloads/list

4. Extract CloudSim to particular directory. Here let’s

say C:\cloudsim-3.0.2

5. Open Eclipse

6. In the Eclipse menu, select “New” → “Project...”

7. In the “Select a Wizard” window, select “Java

Project” then click “Next”

8. In the “Create a Java Project” window, fill the field

“Project name” with CloudSim. Then select “Create

project from existing source”. In the “Directory”

field, select the directory extracted from the

CloudSim package. If you have more than one JVM,

in this window you have to select Sun Java 6. Then,

select “Finish” to complete project creation.

9. After these steps, CloudSim you can navigate through

CloudSim packages, and develop your own

simulations using CloudSim.

4.2 CloudSim Life Cycle

CloudSim Life Cycle is shown in figure 7.

Fig. 7 CloudSim Life Cycle

Step 1: First step: Initialize the CloudSim package. It should

be called before creating any entities.

Int num_user = 1; //number of cloud users

Calendar calendar = Calender.getInstance(); //

Calendar whose fields have been initialized with the

current date and time.

Boolean trace_flag = false; //mean trace events

 CloudSim.init(num_user, calendar, trace_flag);

Step 2: Create Datacenters

Datacenter datacenter0 = createDatacenter

("Datacenter_0");

Step3: Create Broker

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 52

 DatacenterBroker broker = createBroker();

 int brokerId = broker.getId();

Step 4: Create virtual machine

 vmlist = new ArrayList<Vm>();

 // VM description

 int vmid = 0;

 int mips = 1000;

 long size = 10000; // image size (MB)

 int ram = 512; // vm memory (MB)

 long bw = 1000;

 int pesNumber = 1; // number of cpus

 String vmm = "Xen"; // VMM name

 Vm vm = new Vm(vmid, brokerId, mips, pesNumber,

ram, bw, size, vmm, new

CloudletSchedulerTimeShared()); // create

VM

 vmlist.add(vm); // add the VM to the vmList

 broker.submitVmList(vmlist); // submit vm list to the

broker

Step 5: Create Cloudlet

 cloudletList = new ArrayList<Cloudlet>();

 // Cloudlet properties

 int id = 0;

 long length = 400000;

 long fileSize = 300;

 long outputSize = 300;

 UtilizationModel utilizationModel = new

UtilizationModelFull();

Cloudlet cloudlet = new Cloudlet (id, length,

pesNumber, fileSize, outputSize, utilizationModel,

utilizationModel, utilizationModel);

 cloudlet.setUserId(brokerId);

 cloudlet.setVmId(vmid);

 cloudletList.add(cloudlet); // add the cloudlet

to the list

 broker.submitCloudletList(cloudletList); // submit

cloudlet list to the broker

Step 6: Start the simulation

CloudSim.startSimulation();

Step 7: Stops the simulation

 CloudSim.stopSimulation();

Step 8: Print results when simulation is over

 List<Cloudlet> newList =

broker.getCloudletReceivedList();

 printCloudletList(newList);

 Log.printLine("CloudSimExample1 finished!");

Create a Data Center

Step 1: Create a list to store hosts

 List<Host> hostList = new ArrayList<Host> ();

Step 2: Create a list to store PEs or CPUs/Cores

 List<Pe> peList = new ArrayList<Pe>(); // In this

example, it will have only one core.

 int mips = 1000;

Step 3: Create PEs and add these into a list.

 peList.add(new Pe(0, new

PeProvisionerSimple(mips))); // need to store Pe id and MIPS

Rating

Step 4: Create Host with its id and list of PEs and add them to

the list of machines

 int hostId = 0;

 int ram = 2048; // host memory (MB)

 long storage = 1000000; // host storage

 int bw = 10000;

hostList.add(new Host(hostId,new

RamProvisionerSimple(ram),new

BwProvisionerSimple(bw),storage,peList,new

VmSchedulerTimeShared(peList))); // This is our

machine

Step 5: Create a DatacenterCharacteristics object that stores

the properties of a data center: architecture, OS, list of

Machines, allocation policy: time- or space-shared, time zone

and its price (G$/Pe time unit).

 String arch = "x86"; // system architecture

 String os = "Linux"; // operating system

 String vmm = "Xen";

 double time_zone = 10.0; // time zone this resource

located

 double cost = 3.0; // the cost of using processing in

this resource

 double costPerMem = 0.05; // the cost of using

memory in this resource

 double costPerStorage = 0.001; // the cost of using

storage in this resource

 double costPerBw = 0.0; // the cost of using bw in

this resource

 LinkedList<Storage> storageList = new

LinkedList<Storage>();

DatacenterCharacteristics characteristics = new

DatacenterCharacteristics(arch, os, vmm, hostList,

time_zone, cost, costPerMem, costPerStorage,

costPerBw);

Step 6: Final step is to create a Datacenter object

Datacenter datacenter = null;

 try {

datacenter = new Datacenter(name,

characteristics, new

VmAllocationPolicySimple(hostLis

t), storageList, 0);

 } catch (Exception e) {

 e.printStackTrace();

 }

5. VARIOUS POLICIES IN CLOUDSIM

5.1 VMSchedulingPolicy

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 53

CloudSim models scheduling of CPU resources at two levels:

Host and VM.

At Host level, the host shares fractions of each processor

element (PE) to each VM running on it. Because resources are

shared among VMs, this scheduler is called VmScheduler. The

scheduler a host uses is a parameter of the Host constructor. In

the VM level, each virtual machine divides the resources

received from the host among Cloudlets running on it. Because

in this level resources are shared among Cloudlets, this

scheduler is called CloudletScheduler. The scheduler a VM

uses is a parameter of its constructor.

In both levels, there are two default policies available:

 SpaceShared: In this policy required PEs by

Cloudlets/VMs are exclusively allocated. It means

that if there are more running elements (VMs or

Cloudlets) than available PEs, the last elements to

arrive wait on a queue until enough resources are

free.

 TimeShared: In this policy fraction of available PEs

are shared among running elements, and all the

elements run simultaneously.

Policies for VM Scheduling and Cloudlet Scheduling can be

used in any combination. For example, researchers can use

VmSchedulerTimeShared and CloudletSchedulerSpaceShared,

or researchers can use VmSchedulerTimeShared and

CloudletSchedulerTimeShared. It is possible even having a

host running VMs with different Cloudlet scheduling policies,

or a data center with hosts with different VM Scheduling

policies. To define your own policy, you have to extend either

VmScheduler or CloudletScheduler, create the methods for

deciding sharing of PEs and pass the new class during

construction of the relevant object. For example, extend

VmScheduler and pass the object to the host; or extend

CloudletScheduler and pass the object to the VM.

5.2 VMProvisioningPolicy

The provisioning problem consists of defining, among the

available hosts in the data center, which one should receive a

new machine requested by a user. Provisioning of hosts to

VMs in data centers follows a simple strategy where the host

with less running VMs receives the next VM. This behavior is

defined in the VmAllocationPolicySimple class. To change

this behavior, extend VmAllocationPolicy to define the new

provisioning behavior, and pass this object in the initialization

of Datacenter.

 VmAllocationPolicy is an abstract class that

represents the provisioning policy of hosts to virtual

machines in a datacenter.

 PowerVmAllocationPolicyAbstract is an abstract

class which defined a power-aware VM allocation

policy.

 PowerVmAllocationPolicyMigrationAbstract is an

abstract class which defined a power-aware VM

allocation policy that dynamically optimizes the VM

allocation using migration.

The other classes, which defined some different policy of

power-aware VM allocation policy, are all extended from

PowerVmAllocationPolicyMigrationAbstract or

PowerVmAllocationPolicyAbstract. Researchers can also

implement dynamic VM reallocation algorithms by

implementing the optimizeAllocation method of the

PowerVmAllocationPolicyAbstract class, which is called at

every time frame and passed with the full set of current VMs

in the data center.

5.3 VMSelectionPolicy

The VM selection problem consists of defining, among the

VMs in a certain host, which one should migrate to a new

machine requested by a user because of the power

consideration. PowerVmSelectionPolicy is an abstract class

that represents the VM selection policy. CloudSim defines four

VM selection policies for the host to choose which VM should

be migrated:

 The Minimum Migration Time (MMT) policy select a

VM that requires the minimum time to complete a

migration relatively to the other VMs allocated to the

host.

 The Random Choice (RC) policy selects a VM to be

migrated according to a uniformly distributed discrete

random variable.

 The Maximum Correlation (MC) policy selects those

VMs to be migrated that have the highest correlation

of the CPU utilization with other VMs.

 The Minimum Utilization (MU) policy selects a VM

to be migrated that requires the minimum CPU

utilization relatively to the other VMs in the host.

6. CONCLUSION

Cloud computing has been one of the fastest growing parts in

IT industry. Simulation based approaches become popular in

industry and academia to evaluate cloud computing systems,

application behaviors and their security. Several simulators

have been specifically developed for performance analysis of

cloud computing environments including CloudSim,

GreenCloud, NetworkCloudSim, CloudAnalyst, EMUSIM and

MDCSim. The CloudSim simulator is probably the most

sophisticated among the simulators overviewed. Researchers

from different Universities use and develop CloudSim by

creating their own mechanisms for resource allocation and

delivery of services. They use it for evaluation of algorithms

for resource allocation; analysis of energy efficiency of data

centers; optimization of cloud environments. This paper

introduced the CloudSim simulator including its architecture,

and how to use it to model the cloud environment. CloudSim

supports flexible, scalable, efficient and repeatable evaluation

of provisioning policies for different applications. This paper

also compares different simulator on the basis of some

parameter like platform, programming language, physical

International Journal of Emerging Technologies in Engineering Research (IJETER)

Volume 4, Issue 12, December (2016) www.ijeter.everscience.org

ISSN: 2454-6410 ©EverScience Publications 54

support and graphical support. In the future, we will use

CloudSim platform to evaluate algorithm which aims to

improve the average resource utilization of the cloud

datacenter and achieve energy efficiency.

REFERENCES

[1]. M. Armbrust, M. Armbrust, A. Fox, A. Fox, R. Griffith, R. Griffith, A.

Joseph, A. Joseph, RH, and RH, “Above the clouds: A Berkeley view of
cloud computing,” Univ.California, Berkeley, Tech. Rep. UCB, pp. 07–

013, 2009.

[2]. Xiaoying Bai, Muyang Li, Bin Chen, W.T. Tsai & J. Gao (2011), “Cloud
Testing Tools”, Proceedings of the 6th IEEE International Symposium

on Service Oriented System Engineering, Pp. 1–12.

[3]. B. Wickremasinghe (2009), “CloudAnalyst: A CloudSim based Tool for
Modeling and Analysis of Large Scale Cloud Computing

Environments”, MEDC Project Report.

[4]. Dzmitry Kliazovich, Pascal Bouvry & Samee Ullah Khan (2010),

“GreenCloud: A Packet-Level Simulator of Energy-Aware Cloud

Computing Data Centers”, Springer Science+Business Media, LLC,

Luxembourg.
[5]. Dr. Pawan Kumar & Gaganjot Kaur , “Study of Comparison of Various

Cloud Computing Simulators”, IITT College of Engineering &

Technology, 2nd National Conference in Intelligent Computing &
Communication, GCET Greater Noida, India

[6]. Dr. Rahul Malhotra & Prince Jain (2013), “An EMUSIM Techniques

and its Components in a Cloud Computing Environment”, International
Journal of Computer Trends and Technology (IJCTT), Vol. 4, No. 8, Pp.

2435–2440.

[7]. Tarun Goyal,Ajit Singh, Akansha Agrawal, CloudSim: Simulator for
cloud computing infrastructure and modeling‖, International Conference

on modeling , optimization and computing Published by Elsevier Ltd

(ICMOC 2012).
[8]. Kalpana Ettikyala, Y Rama Devi, A Study on Cloud Simulation Tools‖,

International Journal of Computer Applications , Volume 115 – No. 14,
April 2015, ISSN: 0975 – 8887.

[9]. Calheiros, R.N., Ranjan, R., De Rose, C.A.F., Buyya, R., “CloudSim: A

Novel Framework for Modeling and Simulation of Cloud Computing
Infrastructures and Services” in Technical Report, GRIDS-TR-2009-1,

Grid Computing and Distributed Systems Laboratory, The University of

Melbourne, Australia, pp.1-9,2009.
[10]. CloudSim Features , http://www.cloudbus.org/cloudsim/ Accessed 17

July, 2016

[11]. Calheiros, R., R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation of Resource Provisioning

Algorithms. Software: Practice and Experience (SPE), 41, January 2011,
Number 1, 23-50, ISSN: 0038-0644, New York, USA, Wiley Press.

[12]. Howell F, Mcnab R. SimJava: A discrete event simulation library for

java. Proceedings of the First International Conference on Web-based
Modeling and Simulation, San Diego, U.S.A., 1998

[13]. Rushikesh Shingade , Amit Patil , Shivam Suryawanshi , M. Venkatesan

, ―Efficient Resource Management in Cloud Computing‖, e-ISSN :
0975-4024 Rushikesh Shingade et al. / International Journal of

Engineering and Technology (IJET), Vol 7 No 6 Dec 2015-Jan 2016 p-

ISSN 0975-4024.
[14]. Rodrigo N. Calheiros, Rajiv Ranjan, Cesar A. F. De Rose, and Rajkumar

Buyya, CloudSim: A Novel Framework for Modeling and Simulation of

Cloud Computing Infrastructures and Services‖ SOFTWARE –
PRACTICE AND EXPERIENCE, Published online 24 August 2010 in

Wiley Online Library (wileyonlinelibrary.com).

[15]. Patrick A. Taddei, Design and Development of a CloudSim Module to
Model and Evaluate Multi-resource Dependencies, Bachelor Thesis,

Communication Systems Group (CSG), Department of Informatics (IFI),

University of Zurich.
[16]. Cloudsim 3.0 api. http://www.cloudbus.org/cloudsim/doc/api/ Accessed

22 July, 2016.

[17]. Harsha Amipara, A Survey on CloudSim Toolkit for Implementing
Cloud Infrastructure, International Journal of Science Technology &

Engineering , Volume 1, Issue 12, June 2015

[18]. Install CloudSim with eclipse,

http://www.acadox.com/action_handler/download/resource/3525/6005.p
df Accessed 29 July,2016.

